Source code for pylandstats.landscape

"""Landscape analysis."""
from __future__ import division

import functools
import platform
import warnings

import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import rasterio as rio
import transonic
from rasterio import plot
from scipy import ndimage, spatial, stats

from . import settings

if platform.system() == "Windows":
    backend = "numba"
else:
    backend = "pythran"

transonic.set_backend_for_this_module(backend)

__all__ = ["Landscape"]

# sometimes pixel resolutions in GeoTIFF files are floats therefore
# compparisons (e.g., `cell_width == cell_height`) should allow for some
# tolerance (i.e., using `np.isclose`)
CELLLENGTH_RTOL = 0.001
NEIGHBORHOOD_KERNEL_DICT = {
    "8": ndimage.generate_binary_structure(2, 2),  # Moore/queen
    "4": ndimage.generate_binary_structure(2, 1),  # Von Neumann/rook
}


@transonic.boost
def compute_adjacency_arr(padded_arr: "uint32[:,:]", num_classes: "int"):
    # flat-array approach to pixel adjacency from link below:
    # https://ilovesymposia.com/2016/12/20/numba-in-the-real-world/
    # the first axis of `adjacency_arr` is of fixed size of 2 and serves to
    # distinguish between vertical and horizontal adjacencies (we could also
    # use a tuple of two 2-D arrays)
    # adjacency_arr = np.zeros((2, num_classes + 1, num_classes + 1),
    #                          dtype=np.uint32)
    num_cols_adjacency = num_classes + 1
    horizontal_adjacency_arr = np.zeros(
        num_cols_adjacency * num_cols_adjacency, dtype=np.uint32
    )
    vertical_adjacency_arr = np.zeros(
        num_cols_adjacency * num_cols_adjacency, dtype=np.uint32
    )
    num_cols_pixel = padded_arr.shape[1]
    flat_arr = padded_arr.ravel()
    # steps_to_neighbors as argument to distinguish between vertical/
    # horizontal adjacencies
    # steps_to_neighbors = [1, num_cols, -1, -num_cols]
    horizontal_neighbors = [1, -1]
    vertical_neighbors = [num_cols_pixel, -num_cols_pixel]
    start = num_cols_pixel + 1
    end = len(flat_arr) - start
    for i in range(start, end):
        class_i = flat_arr[i]
        # class_left = flat_arr[i - 1]
        # class_right = flat_arr[i + 1]
        # class_above = flat_arr[i - num_cols]
        # class_below = flat_arr[i + num_cols]
        # adjacency_arr[0, class_i, class_left] += 1
        # adjacency_arr[0, class_i, class_right] += 1
        # adjacency_arr[1, class_i, class_above] += 1
        # adjacency_arr[1, class_i, class_below] += 1
        for neighbor in horizontal_neighbors:
            # adjacency_arr[0, class_i, flat_arr[i + neighbor]] += 1
            horizontal_adjacency_arr[
                class_i + num_cols_adjacency * flat_arr[i + neighbor]
            ] += 1
        for neighbor in vertical_neighbors:
            # adjacency_arr[1, class_i, flat_arr[i + neighbor]] += 1
            vertical_adjacency_arr[
                class_i + num_cols_adjacency * flat_arr[i + neighbor]
            ] += 1

    return np.stack((horizontal_adjacency_arr, vertical_adjacency_arr)).reshape(
        (2, num_cols_adjacency, num_cols_adjacency)
    )


def compute_entropy(counts, base=None):
    """
    Compute the entropy for a set of category count values.

    The counts are given in integer amounts and the proportional abundances are
    computed inside the function.

    The base of the logarithm calculates the entropy in different units. Shannon's
    entropy definition uses base 2 with units of "bits" or "shannons". Base e provides
    entropy in units of "nats", and base 10 calculates entropy in units of "dits" or
    "bans".

    See https://en.wikipedia.org/wiki/Entropy_(information_theory) for more information.

    Parameters
    ----------
    counts: list-like
        The number of occurrences of each category
    base: numeric
        The base for logarithm calculation, with default as the natural
        logarithm (Euler's number).

    Returns
    -------
    entropy: numeric
    """
    pcounts = (counts / counts.sum())[counts > 0]
    entropy = -np.sum(pcounts * np.log(pcounts))
    if base:
        entropy /= np.log(base)
    return entropy


class Landscape:
    """Raster landscape upon which landscape metrics are computed."""

[docs] def __init__( self, landscape, res=None, nodata=None, transform=None, neighborhood_rule="8", **kwargs, ): """ Initialize the landscape instance. Parameters ---------- landscape : numpy.ndarray or str, file-like object or pathlib.Path object A landscape array with pixel values corresponding to a set of land use/land cover classes, or a filename or URL, a file-like object opened in binary ('rb') mode, or a Path object. If not a `numpy.ndarray`, `landscape` will be passed to `rasterio.open`. res : tuple, optional The (x, y) resolution of the dataset. Required if `landscape` is a `numpy.ndarray`. nodata : int, optional Value to be assigned to pixels with no data. If no value is provided, the default value set in `settings.DEFAULT_LANDSCAPE_NODATA` will be taken. transform : affine.Affine, optional Transformation from pixel coordinates to coordinate reference system. If `landscape` is a path to a raster dataset, this argument will be ignored and extracted from the raster's metadata instead. neighborhood_rule : {'8', '4'}, optional Neighborhood rule to determine patch adjacencies, i.e: '8' (queen's case/Moore neighborhood) or '4' (rook's case/Von Neumann neighborhood). If no value is provided, the default value set in `settings.DEFAULT_NEIGHBORHOOD_RULE` will be taken. **kwargs : optional Keyword arguments to be passed to `rasterio.open`. Ignored if `landscape` is a `numpy.ndarray`. """ if isinstance(landscape, np.ndarray): landscape_arr = np.copy(landscape) if res is None: raise ValueError( "If `landscape` is a `np.ndarray`, `res` must be provided" ) if nodata is None: nodata = settings.DEFAULT_LANDSCAPE_NODATA else: with rio.open(landscape, nodata=nodata, **kwargs) as src: landscape_arr = src.read(1) if res is None: res = src.res if nodata is None: nodata = src.nodata transform = src.transform self.landscape_arr = landscape_arr self.cell_width, self.cell_height = res self.cell_area = res[0] * res[1] self.nodata = nodata self.transform = transform # set the neigbhor adjacency rule if neighborhood_rule is None: neighborhood_rule = settings.DEFAULT_NEIGHBORHOOD_RULE elif isinstance(neighborhood_rule, int): neighborhood_rule = str(neighborhood_rule) if neighborhood_rule not in ("8", "4"): raise ValueError("`neighborhood_rule` is not among ('8', '4')") self.neighborhood_rule = neighborhood_rule # by default, numpy creates arrays of floats. Instead, land use/land # cover rasters are often of integer dtypes. Therefore, we will # explicitly set the dtype of the landscape classes to ensure # consistency classes = np.array( sorted(np.unique(landscape_arr)), dtype=self.landscape_arr.dtype ) classes = classes[classes != nodata] classes = classes[~np.isnan(classes)] self.classes = classes
########################################################################### # common utilities # constants PATCH_METRICS = [ "area", "perimeter", "perimeter_area_ratio", "shape_index", "fractal_dimension", "euclidean_nearest_neighbor", ] # 'contiguity_index', 'proximity' DISTR_METRICS = [ patch_metric + "_" + suffix for patch_metric in PATCH_METRICS for suffix in ["mn", "am", "md", "ra", "sd", "cv"] ] CLASS_METRICS = [ "total_area", "proportion_of_landscape", "number_of_patches", "patch_density", "largest_patch_index", "total_edge", "edge_density", "landscape_shape_index", "effective_mesh_size", ] + DISTR_METRICS ENTROPY_METRICS = [ "entropy", "shannon_diversity_index", "joint_entropy", "conditional_entropy", "mutual_information", "relative_mutual_information", "contagion", ] LANDSCAPE_METRICS = ( [ "total_area", "number_of_patches", "patch_density", "largest_patch_index", "total_edge", "edge_density", "landscape_shape_index", "effective_mesh_size", ] + ENTROPY_METRICS + DISTR_METRICS ) # compute methods def class_label(self, class_val): """ Generate an array with labeled patches of the class. Parameters ---------- class_val : int Class for which the patches should be labeled. Returns ------- label_arr : numpy.ndarray An integer raster where each patch has a unique label. """ return ndimage.label( self.landscape_arr == class_val, NEIGHBORHOOD_KERNEL_DICT[self.neighborhood_rule], ) # compute methods to obtain a scalar from an array def compute_arr_perimeter(self, arr): """ Compute the total perimeter of patches a categorical raster. Parameters ---------- arr : numpy.ndarray The input raster. Returns ------- perimeter : numeric The total patch perimeter. """ return ( np.sum(arr[1:, :] != arr[:-1, :]) * self.cell_width + np.sum(arr[:, 1:] != arr[:, :-1]) * self.cell_height ) # compute methods to obtain patchwise scalars def compute_patch_areas(self, label_arr): """ Compute the area of each patch in a labeled patch array. Parameters ---------- label_arr : numpy.ndarray Array with unique integer labels for each patch. Returns ------- patch_areas : numpy.ndarray One-dimensional array with the area of each patch. """ # we could use `ndimage.find_objects`, but since we do not need to # preserve the feature shapes, `np.bincount` is much faster return np.bincount(label_arr.ravel())[1:] * self.cell_area def compute_patch_perimeters(self, label_arr): """ Compute the perimeter of each patch in a labeled patch array. Parameters ---------- label_arr : numpy.ndarray Array with unique integer labels for each patch. Returns ------- patch_perimeters : numpy.ndarray One-dimensional array with the perimeter of each patch. """ # NOTE: performance comparison of `patch_perimeters` as np.array of # fixed size with `patch_perimeters[i] = ...` within the loop is # slower and less Pythonic but can lead to better performances if # optimized via Cython/numba patch_perimeters = [] # `ndimage.find_objects` only finds the (rectangular) bounds; there # might be parts of other patches within such bounds, so we need to # check which pixels correspond to the patch of interest. Since # `ndimage.label` labels patches with an enumeration starting by 1, we # can use Python's built-in `enumerate` # NOTE: feature-wise iteration could this be done with # `ndimage.labeled_comprehension( # label_arr, label_arr, np.arange(1, num_patches + 1), # _compute_arr_perimeter, np.float, default=None)` # ? # I suspect no, because each feature array is flattened, which does # not allow for the computation of the perimeter or other shape metrics for i, patch_slice in enumerate(ndimage.find_objects(label_arr), start=1): patch_arr = np.pad( label_arr[patch_slice] == i, pad_width=1, mode="constant", constant_values=False, ) # self.nodata patch_perimeters.append(self.compute_arr_perimeter(patch_arr)) return patch_perimeters def compute_patch_euclidean_nearest_neighbor(self, label_arr): """ Compute the ENN distance of each patch in a labeled patch array. Parameters ---------- label_arr : numpy.ndarray Array with unique integer labels for each patch. Returns ------- enn : numpy.ndarray One-dimensional array with the ENN distance of each patch. """ # label_arr, num_patches = self.class_label(class_val) if np.max(label_arr) < 2: # num_patches < 2 return np.array([np.nan]) else: # we will first get only the edges of the patches, since the # shortest edge-to-edge distance between patches is certainly # going to be between pixels at their corresponding patch edge label_mask = label_arr != 0 edges_mask = label_mask & ~ndimage.binary_erosion( label_mask, NEIGHBORHOOD_KERNEL_DICT[self.neighborhood_rule] ) edges_arr = label_arr * edges_mask # get coordinates with non-zero values # Note that `label_arr` will use zero values to indicate nodata # (even if our landscape raster uses a different nodata value, # i.e., `self.nodata`) I, J = np.nonzero(edges_arr) labels = label_arr[I, J] # this gives all the non-zero labels coords = np.column_stack((I, J)) # sort labels/coordinates by the feature value sorter = np.argsort(labels) labels = labels[sorter] coords = coords[sorter] # # begin CDIST # # get feature-vs-feature distance matrix # sq_dists = spatial.distance.cdist(coords, coords, # 'sqeuclidean') # start_idx = np.flatnonzero(np.r_[1, np.diff(labels)]) # nonzero_vs_feat = np.minimum.reduceat(sq_dists, start_idx, # axis=1) # feat_vs_feat = np.minimum.reduceat( # nonzero_vs_feat, start_idx, axis=0) # # get min edge-to-edge distance to closest patch of the same # # class # feat_vs_feat[feat_vs_feat == 0] = np.nan # enn = np.sqrt(np.nanmin(feat_vs_feat, axis=1)) # # end CDIST # begin KDTree unique_labels = np.unique(labels) enn = np.empty(len(unique_labels)) for unique_label in unique_labels: # we build a KDTree with all the coords that are not part of # the current feature tree = spatial.cKDTree( coords[labels != unique_label], balanced_tree=False, compact_nodes=False, ) # now, for each coord of the current feature, we query the # closest coord of the tree (which does not include points of # the current feature) mindist, minid = tree.query(coords[labels == unique_label]) # note that `mindist` and `minid` will be 1D arrays, whose # lengths correspond to the number of pixels within the # current feature. # Each position of `mindist` and `mindid` matches the # corresponding pixel of the current feature to its closest # neighbor from the non-feature tree. Since we are only # interested in the closest distance, we will just get # `min(mindist)`. Note that because of the symmetry, we could # use `minid` to assign this same distance to the counterpart # of `unique_label`. # Nevertheless, the overheads of maintaining the required data # structure would most likely exceed any potential gains. # We use `unique_label - 1` to obtain the corresponding 0-based # index enn[unique_label - 1] = min(mindist) # end KDTree if np.isclose(self.cell_width, self.cell_height, rtol=CELLLENGTH_RTOL): enn *= self.cell_width else: enn *= np.sqrt(self.cell_area) return enn # compute metrics from area and perimeter series def compute_shape_index(self, patch_areas, patch_perimeters): """ Compute the area of each patch in a labeled patch array. Parameters ---------- patch_areas : list-like One-dimensional array with the area of each patch. patch_perimeters : list-like One-dimensional array with the perimeter of each patch. Returns ------- shape_indices : numpy.ndarray One-dimensional array with the shape index of each patch. """ # scalar version of this method # if self.cell_width != self.cell_height: # # this is rare and not even supported in FRAGSTATS. We could # # calculate the perimeter in terms of cell counts in a # # dedicated function and then adjust for a square standard, # # but I believe it is not worth the effort. So we will just # # return the base formula without adjusting for the square # # standard # return .25 * perimeter / np.sqrt(area) # else: # area_cells = area / self.cell_area # # we could also divide by `self.cell_height` # perimeter_cells = perimeter / self.cell_width # n = np.floor(np.sqrt(area_cells)) # m = area_cells - n**2 # if m == 0: # min_p = 4 * n # elif n**2 < area_cells and area_cells <= n * (n + 1): # min_p = 4 * n + 2 # else: # elif area_cells > n * (n + 1): # min_p = 4 * n + 4 # return perimeter_cells / min_p if np.isclose(self.cell_width, self.cell_height, rtol=CELLLENGTH_RTOL): patch_area_cells = patch_areas / self.cell_area # we could also divide by `self.cell_height` patch_perimeter_cells = patch_perimeters / self.cell_width n = np.floor(np.sqrt(patch_area_cells)) m = patch_area_cells - n ** 2 min_p = np.ones(len(patch_area_cells)) min_p = np.where(np.isclose(m, 0), 4 * n, min_p) min_p = np.where( (n ** 2 < patch_area_cells) & (patch_area_cells <= n * (n + 1)), 4 * n + 2, min_p, ) min_p = np.where(patch_area_cells > n * (n + 1), 4 * n + 4, min_p) return patch_perimeter_cells / min_p else: # this is rare and not even supported in FRAGSTATS. We could # calculate the perimeter in terms of cell counts in a # dedicated function and then adjust for a square standard, # but I believe it is not worth the effort. So we will just # return the base formula without adjusting for the square # standard return 0.25 * patch_perimeters / np.sqrt(patch_areas) # properties @property def _num_patches_dict(self): try: return self._cached_num_patches_dict except AttributeError: self._cached_num_patches_dict = { class_val: self.class_label(class_val)[1] for class_val in self.classes } return self._cached_num_patches_dict @property def landscape_area(self): """Landscape area.""" try: return self._landscape_area except AttributeError: if self.nodata == 0: # ~ x8 times faster landscape_num_cells = np.count_nonzero(self.landscape_arr) else: landscape_num_cells = np.sum(self.landscape_arr != self.nodata) self._landscape_area = landscape_num_cells * self.cell_area return self._landscape_area @property def _patch_class_ser(self): try: return self._cached_patch_class_ser except AttributeError: self._cached_patch_class_ser = pd.Series( np.concatenate( [ np.full(self._num_patches_dict[class_val], class_val) for class_val in self.classes ] ), name="class_val", ) return self._cached_patch_class_ser @property def _patch_area_ser(self): try: return self._cached_patch_area_ser except AttributeError: self._cached_patch_area_ser = pd.Series( np.concatenate( [ self.compute_patch_areas(self.class_label(class_val)[0]) for class_val in self.classes ] ), name="area", ) return self._cached_patch_area_ser @property def _patch_perimeter_ser(self): try: return self._cached_patch_perimeter_ser except AttributeError: self._cached_patch_perimeter_ser = pd.Series( np.concatenate( [ self.compute_patch_perimeters(self.class_label(class_val)[0]) for class_val in self.classes ] ), name="perimeter", ) return self._cached_patch_perimeter_ser @property def _patch_euclidean_nearest_neighbor_ser(self): try: return self._cached_patch_euclidean_nearest_neighbor_ser except AttributeError: self._cached_patch_euclidean_nearest_neighbor_ser = pd.Series( np.concatenate( [ self.compute_patch_euclidean_nearest_neighbor( self.class_label(class_val)[0] ) for class_val in self.classes ] ), name="euclidean_nearest_neighbor", ) return self._cached_patch_euclidean_nearest_neighbor_ser @property def _adjacency_df(self): try: return self._cached_adjacency_df except AttributeError: num_classes = len(self.classes) # first create a reclassified array with the landscape's shape # where each class value will be an int from 0 to `num_classes - 1` # and the nodata value will be an int of value `num_classes` reclassified_arr = np.copy(self.landscape_arr) for i, class_val in enumerate(self.classes): reclassified_arr[self.landscape_arr == class_val] = i reclassified_arr[self.landscape_arr == self.nodata] = num_classes # pad the reclassified array with the nodata value (i.e., # `num_classes` see comment above). Set dtype to `np.uint32` to # match the numba method signature of # `pylandstats_compute.compute_adjacency_arr` padded_arr = np.pad( reclassified_arr, pad_width=1, mode="constant", constant_values=num_classes, ).astype(np.uint32) # compute the adjacency array adjacency_arr = compute_adjacency_arr( padded_arr, num_classes ) # .sum(axis=0) # put the adjacency array in the form of a pandas DataFrame adjacency_cols = np.concatenate([self.classes, [self.nodata]]) adjacency_df = pd.DataFrame( index=pd.MultiIndex.from_product( [["horizontal", "vertical"], adjacency_cols], names=["direction", "class_val"], ), columns=adjacency_cols, ) adjacency_df.loc["horizontal"] = adjacency_arr[0] adjacency_df.loc["vertical"] = adjacency_arr[1] # cache it self._cached_adjacency_df = adjacency_df return self._cached_adjacency_df def compute_total_adjacency_df(self): """ Compute the total adjacency (vertical and horizontal) data frame. Returns ------- adjacency_df: pandas.DataFrame Adjacency data frame with total adjacencies (vertical and horizontal). """ # first `groupby` and `sum` to sum vertical and horizontal adjacencies # (first-level index), then `loc` to overlook the nodata row/column return self._adjacency_df.groupby(level=1).sum().loc[self.classes, self.classes] # small utilities to get patch areas/perimeters for a particular class only def _get_patch_area_ser(self, class_val=None): if class_val is None: patch_area_ser = self._patch_area_ser else: patch_area_ser = self._patch_area_ser[self._patch_class_ser == class_val] # TODO: return a copy? even when `class_val` is set and thus # `patch_area_ser` is a slice: although we would not have alias # problems, we would get a `SettingWithCopyWarning` form `pandas` return patch_area_ser def _get_patch_perimeter_ser(self, class_val=None, copy=False): if class_val is None: patch_perimeter_ser = self._patch_perimeter_ser else: patch_perimeter_ser = self._patch_perimeter_ser[ self._patch_class_ser == class_val ] # TODO: return a copy? even when `class_val` is set and thus # `patch_perimeter_ser` is a slice: although we would not have alias # problems, we would get a `SettingWithCopyWarning` form `pandas` return patch_perimeter_ser def _get_patch_euclidean_nearest_neighbor_ser(self, class_val=None, copy=False): if class_val is None: patch_euclidean_nearest_neighbor_ser = ( self._patch_euclidean_nearest_neighbor_ser ) else: patch_euclidean_nearest_neighbor_ser = ( self._patch_euclidean_nearest_neighbor_ser[ self._patch_class_ser == class_val ] ) # TODO: return a copy? even when `class_val` is set and thus # `patch_perimeter_ser` is a slice: although we would not have alias # problems, we would get a `SettingWithCopyWarning` form `pandas` return patch_euclidean_nearest_neighbor_ser # metric distribution statistics def _metric_reduce( self, class_val, patch_metric_method, patch_metric_method_kws, reduce_method, ): if patch_metric_method_kws is None: patch_metrics = patch_metric_method(class_val) else: patch_metrics = patch_metric_method(class_val, **patch_metric_method_kws) if class_val is None: # ACHTUNG: dropping columns from a `pd.DataFrame` until leaving it # with only one column will still return a `pd.DataFrame`, so we # must convert to `pd.Series` manually (e.g., with `iloc`) patch_metrics = patch_metrics.drop("class_val", axis=1).iloc[:, 0] return reduce_method(patch_metrics) def _metric_mn(self, class_val, patch_metric_method, patch_metric_method_kws=None): return self._metric_reduce( class_val, patch_metric_method, patch_metric_method_kws, np.mean ) def _metric_am(self, class_val, patch_metric_method, patch_metric_method_kws=None): # `area` can be `pd.Series` or `pd.DataFrame` area = self.area(class_val) if class_val is None: area = area["area"] return self._metric_reduce( class_val, patch_metric_method, patch_metric_method_kws, functools.partial(np.average, weights=area), ) def _metric_md(self, class_val, patch_metric_method, patch_metric_method_kws=None): return self._metric_reduce( class_val, patch_metric_method, patch_metric_method_kws, np.median ) def _metric_ra(self, class_val, patch_metric_method, patch_metric_method_kws=None): return self._metric_reduce( class_val, patch_metric_method, patch_metric_method_kws, lambda ser: ser.max() - ser.min(), ) def _metric_sd(self, class_val, patch_metric_method, patch_metric_method_kws=None): return self._metric_reduce( class_val, patch_metric_method, patch_metric_method_kws, np.std ) def _metric_cv( self, class_val, patch_metric_method, patch_metric_method_kws=None, percent=True, ): metric_cv = self._metric_reduce( class_val, patch_metric_method, patch_metric_method_kws, stats.variation, ) if percent: metric_cv *= 100 return metric_cv ########################################################################### # patch-level metrics # area and edge metrics
[docs] def area(self, class_val=None, hectares=True): r""" Area of each patch of the landscape. .. math:: AREA = a_{i,j} \quad [hec] \; or \; [m^2] Parameters ---------- class_val : int, optional If provided, the metric will be computed for the corresponding class only, otherwise it will be computed for all the classes of the landscape. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- AREA : pandas.Series if `class_val` is provided, pandas.DataFrame otherwise AREA > 0, without limit. """ # class_ser = self._patch_class_ser # area_ser = self._patch_area_ser.copy() area_ser = self._get_patch_area_ser(class_val) if hectares: # ACHTUNG: very important to copy to ensure that we do not modify # the 'area' values if converting to hectares nor we return a # variable with the reference to the property # `self._patch_areas_ser` area_ser = area_ser.copy() area_ser /= 10000 if class_val is None: return pd.DataFrame({"class_val": self._patch_class_ser, "area": area_ser}) else: return area_ser
[docs] def perimeter(self, class_val=None): r""" Perimeter of each patch of the landscape. .. math:: PERIM = p_{i,j} \quad [m] Parameters ---------- class_val : int, optional If provided, the metric will be computed for the corresponding class only, otherwise it will be computed for all the classes of the landscape. Returns ------- PERIM : pandas.Series if `class_val` is provided, pandas.DataFrame otherwise PERIM > 0, without limit. """ # class_ser = self._patch_class_ser # perimeter_ser = self._patch_perimeter_ser perimeter_ser = self._get_patch_perimeter_ser(class_val) if class_val is None: return pd.DataFrame( { "class_val": self._patch_class_ser, "perimeter": perimeter_ser, } ) else: return perimeter_ser
# shape
[docs] def perimeter_area_ratio(self, class_val=None, hectares=True): r""" Ratio between the perimeter and area of each patch of the landscape. Measures shape complexity, however it varies with the size of the patch, e.g, for the same shape, larger patches will have a smaller perimeter-area ratio. .. math:: PARA = \frac{p_{i,j}}{a_{i,j}} \quad [m/hec] \; or \; [m/m^2] Parameters ---------- class_val : int, optional If provided, the metric will be computed for the corresponding class only, otherwise it will be computed for all the classes of the landscape. hectares : bool, default True Whether the area should be converted to hectares (tends to yield more legible values for the metric). Returns ------- PARA : pandas.Series if `class_val` is provided, pandas.DataFrame otherwise PARA > 0, without limit. """ # class_ser = self._patch_class_ser # area_ser = self._patch_area_ser.copy() area_ser = self._get_patch_area_ser(class_val) perimeter_ser = self._get_patch_perimeter_ser(class_val) if hectares: # ACHTUNG: very important to copy to ensure that we do not modify # the 'area' values if converting to hectares nor we return a # variable with the reference to the property # `self._patch_areas_ser` area_ser = area_ser.copy() area_ser /= 10000 perimeter_area_ratio_ser = perimeter_ser / area_ser if class_val is None: return pd.DataFrame( { "class_val": self._patch_class_ser, "perimeter_area_ratio": perimeter_area_ratio_ser, } ) else: # ensure that the returned `pd.Series` has a name (so `seaborn` # plots can automatically label the axes) perimeter_area_ratio_ser.name = "perimeter_area_ratio" return perimeter_area_ratio_ser
[docs] def shape_index(self, class_val=None): r""" Measure of shape complexity. Similar to the perimeter-area ratio, but correcting for its size problem by adjusting for a standard square shape. .. math:: SHAPE = \frac{.25 \; p_{i,j}}{\sqrt{a_{i,j}}} Parameters ---------- class_val : int, optional If provided, the metric will be computed for the corresponding class only, otherwise it will be computed for all the classes of the landscape. Returns ------- SHAPE : pandas.Series if `class_val` is provided, pandas.DataFrame otherwise SHAPE >= 1, without limit ; SHAPE equals 1 when the patch is maximally compact, and increases without limit as patch shape becomes more irregular. """ area_ser = self._get_patch_area_ser(class_val) perimeter_ser = self._get_patch_perimeter_ser(class_val) shape_index_ser = self.compute_shape_index(area_ser, perimeter_ser) if class_val is None: return pd.DataFrame( { "class_val": self._patch_class_ser, "shape_index": shape_index_ser, } ) else: # ensure that the returned `pd.Series` has a name (so `seaborn` # plots can automatically label the axes) shape_index_ser.name = "shape_index" return shape_index_ser
[docs] def fractal_dimension(self, class_val=None): r""" Measure of shape complexity appropriate across a wide range of patch sizes. .. math:: FRAC = \frac{2 \; ln (.25 \; p_{i,j})}{ln (a_{i,j})} Parameters ---------- class_val : int, optional If provided, the metric will be computed for the corresponding class only, otherwise it will be computed for all the classes of the landscape. Returns ------- FRAC : pandas.Series if `class_val` is provided, pandas.DataFrame otherwise 1 <= FRAC <=2 ; for a two-dimensional patch, FRAC approaches 1 for very simple shapes such as squares, and approaches 2 for complex plane-filling shapes. """ area_ser = self._get_patch_area_ser(class_val) perimeter_ser = self._get_patch_perimeter_ser(class_val) # TODO: separate staticmethod? fractal_dimension_ser = 2 * np.log(0.25 * perimeter_ser) / np.log(area_ser) if class_val is None: return pd.DataFrame( { "class_val": self._patch_area_ser, "fractal_dimension": fractal_dimension_ser, } ) else: # ensure that the returned `pd.Series` has a name (so `seaborn` # plots can automatically label the axes) fractal_dimension_ser.name = "fractal_dimension" return fractal_dimension_ser
def continguity_index(self, class_val=None): """ Contiguity index. Parameters ---------- class_val : int, optional If provided, the metric will be computed for the corresponding class only, otherwise it will be computed for all the classes of the landscape. Returns ------- CONTIG : numeric 0 <= CONTIG <= 1 ; contig equals 0 for a one-pixel patch and increases to a limit of 1 as patch contiguity increases. """ # TODO raise NotImplementedError # aggregation metrics (formerly isolation, proximity)
[docs] def euclidean_nearest_neighbor(self, class_val=None): r""" Distance to the nearest neighboring patch of the same class. Based on the shortest edge-to-edge Euclidean distance. .. math:: ENN = h_{i,j} \quad [m] Parameters ---------- class_val : int, optional If provided, the metric will be computed for the corresponding class only, otherwise it will be computed for all the classes of the landscape. Returns ------- ENN : numeric ENN > 0, without limit ; ENN approaches 0 as the distance to the nearest neighbors decreases. """ euclidean_nearest_neighbor_ser = self._get_patch_euclidean_nearest_neighbor_ser( class_val ) if class_val is None: for class_val in self.classes: num_patches = self._num_patches_dict[class_val] if num_patches < 2: warnings.warn( "Class {} has less than 2 patches. ".format(class_val) + "Euclidean-nearest-neighbor might contain nan values", RuntimeWarning, ) return pd.DataFrame( { "class_val": self._patch_class_ser, "euclidean_nearest_neighbor": euclidean_nearest_neighbor_ser, } ) else: num_patches = self._num_patches_dict[class_val] if num_patches < 2: warnings.warn( "Class {} has less than 2 patches. ".format(class_val) + "Euclidean-nearest-neighbor might contain nan values", RuntimeWarning, ) return euclidean_nearest_neighbor_ser
def proximity(self, search_radius, class_val=None): """ Proximity. Parameters ---------- search_radius : numeric Search radius defining the neighborhood at which the metric will be computed for each patch. class_val : int, optional If provided, the metric will be computed for the corresponding class only, otherwise it will be computed for all the classes of the landscape. Returns ------- PROX : numeric PROX >= 0 ; prox equals 0 if a patch has no neighbors, and increases as the neighborhood is occupied by patches of the same type and those patches become more contiguous (or less fragmented). """ # TODO raise NotImplementedError ########################################################################### # class-level and landscape-level metrics # area, density, edge
[docs] def total_area(self, class_val=None, hectares=True): r""" Total area. If `class_val` is provided, the metric is computed at the class level as in: .. math:: TA_i = \sum_{j=1}^{n_i} a_{i,j} \quad [hec] \; or \; [m^2] \quad (class \; i) otherwise, the metric is computed at the landscape level as in: .. math:: TA = A \quad [hec] \; or \; [m^2] \quad (landscape) Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. hectares : bool, default True Whether the area should be converted to hectares (tends to yield more legible values for the metric). Returns ------- TA : numeric """ if class_val is None: total_area = self.landscape_area else: area_ser = self._get_patch_area_ser(class_val) total_area = np.sum(area_ser) if hectares: total_area /= 10000 return total_area
[docs] def proportion_of_landscape(self, class_val, percent=True): r""" Proportional abundance of a particular class within the landscape. Computed at the class level as in: .. math:: PLAND_i = P_i = \frac{1}{A} \sum_j^{n_i} a_{i,j} \quad (class \; i) Parameters ---------- class_val : int Class for which the metric should be computed. percent : bool, default True Whether the index should be expressed as proportion or converted to percentage. If True, this method returns FRAGSTATS' percentage of landscape (PLAND). Returns ------- PLAND : numeric 0 < PLAND <= 100 ; PLAND approaches 0 when the occurrence of the corresponding class becomes increasingly rare, and approaches 100 when the entire landscape consists of a single patch of such class. """ numerator = np.sum(self._get_patch_area_ser(class_val)) if percent: numerator *= 100 return numerator / self.landscape_area
[docs] def number_of_patches(self, class_val=None): r""" Number of patches. If `class_val` is provided, the metric is computed at the class level as in: .. math:: NP_i = n_i \quad (class \; i) otherwise, the metric is computed at the landscape level as in: .. math:: NP = N \quad (landscape) Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- NP : int NP >= 1, without limit. """ if class_val is None: num_patches = np.sum(list(self._num_patches_dict.values())) else: num_patches = self._num_patches_dict[class_val] return num_patches
[docs] def patch_density(self, class_val=None, percent=True, hectares=True): r""" Density of class patches. Arguably more useful than the number of patches since it facilitates comparison among landscapes of different sizes. If `class_val` is provided, the metric is computed at the class level as in: .. math:: PD_i = \frac{n_i}{A} \quad [1/hec] \; or \; [1/m^2] \quad (class \; i) otherwise, the metric is computed at the landscape level as in: .. math:: PD = \frac{N}{A} \quad [1/hec] \; or \; [1/m^2] \quad (landscape) Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. percent : bool, default True Whether the index should be expressed as proportion or converted to percentage. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- PD : numeric PD > 0, constrained by cell size ; maximum PD is attained when every cell is a separate patch. """ # TODO: DRY and use `self.number_of_patches` as in: # `numerator = self.number_of_patches(class_val)` # or avoid reusing metric's methods? if class_val is None: numerator = np.sum(list(self._num_patches_dict.values())) else: numerator = self._num_patches_dict[class_val] if percent: numerator *= 100 if hectares: numerator *= 10000 return numerator / self.landscape_area
[docs] def largest_patch_index(self, class_val=None, percent=True): r""" Proportion of total landscape comprised by the largest patch. If `class_val` is provided, the metric is computed at the class level as in: .. math:: LPI_i = \frac{1}{A} \max_{j=1}^{n_i} a_{i,j} \quad (class \; i) otherwise, the metric is computed at the landscape level as in: .. math:: LPI = \frac{1}{A} \max a_{i,j} \quad (landscape) Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. percent : bool, default True Whether the index should be expressed as proportion or converted to percentage. Returns ------- LPI : numeric 0 < LPI <= 100 (or 0 < LPI <= 1 if percent argument is False); LPI approaches 0 when the largest patch of the corresponding class is increasingly small, and approaches its maximum value when such largest patch comprises the totality of the landscape. """ area_ser = self._get_patch_area_ser(class_val) numerator = np.max(area_ser) if percent: numerator *= 100 return numerator / self.landscape_area
[docs] def total_edge(self, class_val=None, count_boundary=False): r""" Total edge length. If `class_val` is provided, the metric is computed at the class level as in: .. math:: TE_i = \sum_{k=1}^{m} e_{i,k} \quad [m] \quad (class \; i) otherwise, the metric is computed at the landscape level as in: .. math:: TE = E \quad [m] \quad (landscape) Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. count_boundary : bool, default False Whether the boundary of the landscape should be included in the total edge length. Returns ------- TE : numeric TE >= 0 ; TE equals 0 when the entire landscape and its border consist of the corresponding class. """ if class_val is None: if count_boundary: total_edge = self.compute_arr_perimeter( np.pad( self.landscape_arr, pad_width=1, mode="constant", constant_values=self.nodata, ) ) else: if np.isclose(self.cell_width, self.cell_height, rtol=CELLLENGTH_RTOL): adjacency_arr = np.triu( self._adjacency_df.groupby(level=1, sort=False) .sum() .drop(self.nodata) .drop(self.nodata, axis=1) ) np.fill_diagonal(adjacency_arr, 0) total_edge = np.sum(adjacency_arr) * self.cell_width else: total_edge = 0 for direction, length in [ ("horizontal", self.cell_width), ("vertical", self.cell_height), ]: adjacency_arr = np.triu( self._adjacency_df.loc[direction] .drop(self.nodata) .drop(self.nodata, axis=1) ) # `np.fill_diagonal` acts inplace, however `np.triu` # returns a copy so we do not need to worry about # inadvently modfying `self._adjacency_df` np.fill_diagonal(adjacency_arr, 0) total_edge += np.sum(adjacency_arr) * length else: if count_boundary: # then the total edge is just the sum of the perimeters of all # the patches of the corresponding class perimeter_ser = self._get_patch_perimeter_ser(class_val) total_edge = np.sum(perimeter_ser) else: if np.isclose(self.cell_width, self.cell_height, rtol=CELLLENGTH_RTOL): total_edge = ( np.sum( self._adjacency_df.groupby(level=1, sort=False) .sum() .drop([class_val, self.nodata])[class_val] ) * self.cell_width ) else: total_edge = 0 for direction, length in [ ("horizontal", self.cell_width), ("vertical", self.cell_height), ]: total_edge += ( np.sum( self._adjacency_df.loc[direction].drop( [class_val, self.nodata] )[class_val] ) * length ) return total_edge
[docs] def edge_density(self, class_val=None, count_boundary=False, hectares=True): r""" Edge length per area unit. Facilitates comparison among landscapes of different sizes. If `class_val` is provided, the metric is computed at the class level as in: .. math:: ED_i = \frac{1}{A} \sum_{k=1}^{m} e_{i,k} \quad [m/hec] \; or \; [m/m^2] \quad (class \; i) otherwise, the metric is computed at the landscape level as in: .. math:: ED = \frac{E}{A} \quad [m/hec] \; or \; [m/m^2] \quad (landscape) Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. count_boundary : bool, default False Whether the boundary of the landscape should be considered. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- ED : numeric ED >= 0, without limit ; ED equals 0 when the entire landscape and its border consist of the corresponding patch class. """ # TODO: we make an exception here of the "not reusing other metric's # methods within metric's methods" policy, since `total_edge` is a bit # puzzling to compute numerator = self.total_edge(class_val=class_val, count_boundary=count_boundary) if hectares: numerator *= 10000 return numerator / self.landscape_area
def area_mn(self, class_val=None, hectares=True): """ Mean of the patch area distribution. See also the documentation of `area`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- AREA_MN : numeric """ return self._metric_mn(class_val, self.area, {"hectares": hectares}) def area_am(self, class_val=None, hectares=True): """ Area-weighted mean of the patch area distribution. See also the documentation of `area`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- AREA_AM : numeric """ return self._metric_am(class_val, self.area, {"hectares": hectares}) def area_md(self, class_val=None, hectares=True): """ Median of the patch area distribution. See also the documentation of `area`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- AREA_MD : numeric """ return self._metric_md(class_val, self.area, {"hectares": hectares}) def area_ra(self, class_val=None, hectares=True): """ Range of the patch area distribution. See also the documentation of `area`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- AREA_RA : numeric """ return self._metric_ra(class_val, self.area, {"hectares": hectares}) def area_sd(self, class_val=None, hectares=True): """ Standard deviation of the patch area distribution. See also the documentation of `area`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- AREA_SD : numeric """ return self._metric_sd(class_val, self.area, {"hectares": hectares}) def area_cv(self, class_val=None, percent=True): """ Coefficient of variation of the patch area distribution. See also the documentation of `area`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. percent : bool, default True Whether the index should be expressed as proportion or converted to percentage. Returns ------- AREA_CV : numeric """ return self._metric_cv(class_val, self.area, percent=percent) def perimeter_mn(self, class_val=None): """ Mean of the patch perimeter distribution. See also the documentation of `perimeter`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- PERIMETER_MN : numeric """ return self._metric_mn(class_val, self.perimeter) def perimeter_am(self, class_val=None): """ Area-weighted mean of the patch perimeter distribution. See also the documentation of `perimeter`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- PERIMETER_AM : numeric """ return self._metric_am(class_val, self.perimeter) def perimeter_md(self, class_val=None): """ Median of the patch perimeter distribution. See also the documentation of `perimeter`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- PERIMETER_MD : numeric """ return self._metric_md(class_val, self.perimeter) def perimeter_ra(self, class_val=None): """ Range of the patch perimeter distribution. See also the documentation of `perimeter`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- PERIMETER_RA : numeric """ return self._metric_ra(class_val, self.perimeter) def perimeter_sd(self, class_val=None): """ Standard deviation of the patch perimeter distribution. See also the documentation of `perimeter`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- PERIMETER_SD : numeric """ return self._metric_sd(class_val, self.perimeter) def perimeter_cv(self, class_val=None, percent=True): """ Coefficient of variation of the patch perimeter distribution. See also the documentation of `perimeter`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. percent : bool, default True Whether the index should be expressed as proportion or converted to percentage. Returns ------- PERIMETER_CV : numeric """ return self._metric_cv(class_val, self.perimeter, percent=percent) # shape def perimeter_area_ratio_mn(self, class_val=None, hectares=True): """ Mean of the patch perimeter-area ratio distribution. See also the documentation of `perimeter_area_ratio`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- PARA_MN : numeric """ return self._metric_mn( class_val, self.perimeter_area_ratio, {"hectares": hectares} ) def perimeter_area_ratio_am(self, class_val=None, hectares=True): """ Area-weighted mean of the patch perimeter-area ratio distribution. See also the documentation of `perimeter_area_ratio`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- PARA_AM : numeric """ return self._metric_am( class_val, self.perimeter_area_ratio, {"hectares": hectares} ) def perimeter_area_ratio_md(self, class_val=None, hectares=True): """ Median of the patch perimeter-area ratio distribution. See also the documentation of `perimeter_area_ratio`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- PARA_MD : numeric """ return self._metric_md( class_val, self.perimeter_area_ratio, {"hectares": hectares} ) def perimeter_area_ratio_ra(self, class_val=None, hectares=True): """ Range of the patch perimeter-area ratio distribution. See also the documentation of `perimeter_area_ratio`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- PARA_RA : numeric """ return self._metric_ra( class_val, self.perimeter_area_ratio, {"hectares": hectares} ) def perimeter_area_ratio_sd(self, class_val=None, hectares=True): """ Standard deviation of the patch perimeter-area ratio distribution. See also the documentation of `perimeter_area_ratio`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- PARA_SD : numeric """ return self._metric_sd( class_val, self.perimeter_area_ratio, {"hectares": hectares} ) def perimeter_area_ratio_cv(self, class_val=None, percent=True): """ Coefficient of variation of the patch perimeter-area ratio distribution. See also the documentation of `perimeter_area_ratio`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. percent : bool, default True Whether the index should be expressed as proportion or converted to percentage. Returns ------- PARA_CV : numeric """ return self._metric_cv(class_val, self.perimeter_area_ratio, percent=percent) def shape_index_mn(self, class_val=None): """ Mean of the shape index distribution. See also the documentation of `shape_index`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- SHAPE_MN : numeric """ return self._metric_mn(class_val, self.shape_index) def shape_index_am(self, class_val=None): """ Area-weighted mean of the shape index distribution. See also the documentation of `shape_index`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- SHAPE_AM : numeric """ return self._metric_am(class_val, self.shape_index) def shape_index_md(self, class_val=None): """ Median of the shape index distribution. See also the documentation of `shape_index`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- SHAPE_MD : numeric """ return self._metric_md(class_val, self.shape_index) def shape_index_ra(self, class_val=None): """ Range of the shape index distribution. See also the documentation of `shape_index`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- SHAPE_RA : numeric """ return self._metric_ra(class_val, self.shape_index) def shape_index_sd(self, class_val=None): """ Standard deviation of the shape index distribution. See also the documentation of `shape_index`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- SHAPE_SD : numeric """ return self._metric_sd(class_val, self.shape_index) def shape_index_cv(self, class_val=None, percent=True): """ Coefficient of variation of the shape index distribution. See also the documentation of `shape_index`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. percent : bool, default True Whether the index should be expressed as proportion or converted to percentage. Returns ------- SHAPE_CV : numeric """ return self._metric_cv(class_val, self.shape_index, percent=percent) def fractal_dimension_mn(self, class_val=None): """ Mean of the fractal dimension distribution. See also the documentation of `fractal_dimension`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level Returns ------- FRAC_MN : numeric """ return self._metric_mn(class_val, self.fractal_dimension) def fractal_dimension_am(self, class_val=None): """ Area-weighted mean of the fractal dimension distribution. See also the documentation of `fractal_dimension`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- FRAC_AM : numeric """ return self._metric_am(class_val, self.fractal_dimension) def fractal_dimension_md(self, class_val=None): """ Median of the fractal dimension distribution. See also the documentation of `fractal_dimension`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- FRAC_MD : numeric """ return self._metric_md(class_val, self.fractal_dimension) def fractal_dimension_ra(self, class_val=None): """ Range of the fractal dimension distribution. See also the documentation of `fractal_dimension`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- FRAC_RA : numeric """ return self._metric_ra(class_val, self.fractal_dimension) def fractal_dimension_sd(self, class_val=None): """ Standard deviation of the fractal dimension distribution. See also the documentation of `fractal_dimension`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- FRAC_SD : numeric """ return self._metric_sd(class_val, self.fractal_dimension) def fractal_dimension_cv(self, class_val=None, percent=True): """ Coefficient of variation of the fractal dimension distribution. See also the documentation of `fractal_dimension`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. percent : bool, default True Whether the index should be expressed as proportion or converted to percentage. Returns ------- FRAC_CV : numeric """ return self._metric_cv(class_val, self.fractal_dimension, percent=percent) def continguity_index_mn(self, class_val=None): """ Mean of the contiguity index distribution. See also the documentation of `Landscape.contiguity_index`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- CONTIG_MN : numeric """ # TODO raise NotImplementedError def continguity_index_am(self, class_val=None): """ Area-weighted mean of the contiguity index distribution. See also the documentation of `Landscape.contiguity_index`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- CONTIG_AM : numeric """ # TODO raise NotImplementedError def continguity_index_md(self, class_val=None): """ Median of the contiguity index distribution. See also the documentation of `Landscape.contiguity_index`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- CONTIG_MD : numeric """ # TODO raise NotImplementedError def continguity_index_ra(self, class_val=None): """ Range of the contiguity index distribution. See also the documentation of `Landscape.contiguity_index`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- CONTIG_RA : numeric """ # TODO raise NotImplementedError def continguity_index_sd(self, class_val=None): """ Standard deviation of the contiguity index distribution. See also the documentation of `Landscape.contiguity_index`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- CONTIG_SD : numeric """ # TODO raise NotImplementedError def continguity_index_cv(self, class_val=None): """ Coefficient of variation of the contiguity index distribution. See also the documentation of `Landscape.contiguity_index`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- CONTIG_CV : numeric """ # TODO raise NotImplementedError # isolation, proximity def proximity_mn(self, class_val=None): """ Mean of the proximity index distribution. See also the documentation of `Landscape.proximity`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- PROX_MN : numeric """ # TODO raise NotImplementedError def proximity_am(self, class_val=None): """ Area-weighted mean of the proximity index distribution. See also the documentation of `Landscape.proximity`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- PROX_AM : numeric """ # TODO raise NotImplementedError def proximity_md(self, class_val=None): """ Median of the proximity index distribution. See also the documentation of `Landscape.proximity`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- PROX_MD : numeric """ # TODO raise NotImplementedError def proximity_ra(self, class_val=None): """ Range of the proximity index distribution. See also the documentation of `Landscape.proximity`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- PROX_RA : numeric """ # TODO raise NotImplementedError def proximity_sd(self, class_val=None): """ Standard deviation of the contiguity index distribution. See also the documentation of `Landscape.proximity`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- PROX_SD : numeric """ # TODO raise NotImplementedError def proximity_cv(self, class_val=None): """ Coefficient of variation of the proximity index distribution. See also the documentation of `Landscape.proximity`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- PROX_CV : numeric """ # TODO raise NotImplementedError def euclidean_nearest_neighbor_mn(self, class_val=None): """ Mean of the Euclidean nearest neigbhor distribution. See also the documentation of `Landscape.euclidean_nearest_neighbor`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- ENN_MN : numeric """ return self._metric_mn(class_val, self.euclidean_nearest_neighbor) def euclidean_nearest_neighbor_am(self, class_val=None): """ Area-weighted mean of the Euclidean nearest neighbor distribution. See also the documentation of `Landscape.euclidean_nearest_neighbor`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- ENN_AM : numeric """ return self._metric_am(class_val, self.euclidean_nearest_neighbor) def euclidean_nearest_neighbor_md(self, class_val=None): """ Median of the Euclidean nearest neighbor distribution. See also the documentation of `Landscape.euclidean_nearest_neighbor`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- ENN_MD : numeric """ return self._metric_md(class_val, self.euclidean_nearest_neighbor) def euclidean_nearest_neighbor_ra(self, class_val=None): """ Range of the Euclidean nearest neighbor distribution. See also the documentation of `Landscape.euclidean_nearest_neighbor`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- ENN_RA : numeric """ return self._metric_ra(class_val, self.euclidean_nearest_neighbor) def euclidean_nearest_neighbor_sd(self, class_val=None): """ Standard deviation of the Euclidean nearest neighbor distribution. See also the documentation of `Landscape.euclidean_nearest_neighbor`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- ENN_SD : numeric """ return self._metric_sd(class_val, self.euclidean_nearest_neighbor) def euclidean_nearest_neighbor_cv(self, class_val=None, percent=True): """ Coefficient of variation of the Euclidean nearest neighbor distribution. See also the documentation of `Landscape.euclidean_nearest_neighbor`. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. percent : bool, default True Whether the index should be expressed as proportion or converted to percentage. Returns ------- ENN_CV : numeric """ return self._metric_cv( class_val, self.euclidean_nearest_neighbor, percent=percent ) # aggregation
[docs] def landscape_shape_index(self, class_val=None): r""" Measure of class aggregation. Provides a standardized measure of edginess that adjusts for the size of the landscape. If `class_val` is provided, the metric is computed at the class level as in: .. math:: LSI_i = \frac{.25 \sum \limits_{k=1}^{m} e_{i,k}}{\sqrt{A}} \quad (class \; i) otherwise, the metric is computed at the landscape level as in: .. math:: LSI = \frac{.25 E}{\sqrt{A}} \quad (landscape) Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. Returns ------- LSI : numeric LSI >=1 ; LSI equals 1 when the entire landscape consists of a single patch of the corresponding class, and increases without limit as the patches of such class become more disaggregated. """ # compute the total area if class_val is None: area = self.landscape_area else: area = np.sum(self._get_patch_area_ser(class_val)) # TODO: we make an exception here of the "not reusing other metric's # methods within metric's methods" policy, since `total_edge` is a bit # puzzling to compute perimeter = self.total_edge(class_val, count_boundary=True) # `compute shape index` works on vectors, so we need to pass arrays as # arguments and then extract its first (and only element) in order to # return a scalar # TODO: use np.vectorize return self.compute_shape_index(np.array([area]), np.array([perimeter]))[0]
# contagion, interspersion def interspersion_juxtaposition_index(self, class_val=None, percent=True): """ Interspersion and juxtaposition index. Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. percent : bool, default True Whether the index should be expressed as proportion or converted to percentage. Returns ------- IJI : numeric 0 < IJI <= 100 ; IJI approaches 0 when the corresponding class is adjacent to only 1 other class and the number of classes increases, IJI approaches its maximum when the corersponding class is equally adjacent to all other classes. Analogously, at the landscape level, IJI approaches 0 when the distribution of adjacencies among classes becomes increasingly uneven, and approaches its maximum when all classes are equally adjacent to all other classes. """ # TODO raise NotImplementedError
[docs] def effective_mesh_size(self, class_val=None, hectares=True): r""" Measure of aggregation based on the cumulative patch size distribution. If `class_val` is provided, the metric is computed at the class level as in: .. math:: MESH_i = \frac{1}{A} \sum_{j=1}^{n_i} a_{i,j}^2 \quad [m] \quad (class \; i) otherwise, the metric is computed at the landscape level as in: .. math:: MESH = \frac{1}{A} \sum_{i=1}^{m} \sum_{j=1}^{n_i} a_{i,j}^2 \quad [m] \quad (landscape) Parameters ---------- class_val : int, optional If provided, the metric will be computed at the level of the corresponding class, otherwise it will be computed at the landscape level. hectares : bool, default True Whether the landscape area should be converted to hectares (tends to yield more legible values). Returns ------- MESH : numeric cell_area / A <= MESH <= A ; MESH approaches its minimum when there is a single corresponding patch of one pixel, and approaches its maximum when the landscape consists of a single patch. """ mesh = np.sum(self._get_patch_area_ser(class_val) ** 2) / self.landscape_area if hectares: mesh /= 10000 return mesh
########################################################################### # landscape-level metrics # landscape complexity (information theory) # see https://doi.org/10.1007/s10980-019-00830-x # diversity (categorical)
[docs] def entropy(self, base=2): r""" Measure of diversity of landscape classes. Reflects the number of classes present in the landscape as well as the relative abundance of each class. It is computed at the landscape level as in: .. math:: ENT = - \sum \limits_{i=1}^{m} \Big( P_i \; log_b P_i \Big) where `b` is the base logarithm. Parameters ---------- base : numeric, default 2 The base of the logarithm. Returns ------- ENT : numeric 0 <= ENT <= log_b(m) ; ENT approaches 0 when the entire landscape consists of a single patch, and approaches its maximum value, i.e., log_b(m), as the distribution of area among classes becomes more equitable. """ if len(self.classes) < 2: warnings.warn( "Entropy-based metrics can only be computed in landscapes with more " "than two classes of patches. Returning nan", RuntimeWarning, ) return np.nan # sum along column to get counts of each class counts = self.compute_total_adjacency_df().sum() return compute_entropy(counts, base=base)
[docs] def shannon_diversity_index(self): r""" Measure of diversity. Reflects the number of classes present in the landscape as well as the relative abundance of each class. It is computed at the landscape level as in: .. math:: SHDI = - \sum \limits_{i=1}^{m} \Big( P_i \; ln P_i \Big) It corresponds to the entropy with a natural logarithm (base `e`). Returns ------- SHDI : numeric 0 <= SHDI < ln(m) ; SHDI approaches 0 when the entire landscape consists of a single patch, and approaches its maximum value, i.e., ln(m), as the distribution of area among classes becomes more equitable. """ # TODO: Should it return the original definition of log2? # TODO: Update docstring to reflect choice return self.entropy(base=np.e)
# contagion, interspersion (spatial complexity)
[docs] def joint_entropy(self, base=2): r""" Measure of spatial and categorical complexity of the landscape. Measures the probability that two adjacent cells belong to the same class. It is computed at the landscape level as in: .. math:: JOINENT = - \sum \limits_{i=1}^{m} \sum \limits_{k=1}^{m} \Bigg[ P_i \frac{g_{i,k}}{\sum \limits_{k=1}^{m} g_{i,k}} \Bigg] \Bigg[ log_b \Bigg( P_i \frac{g_{i,k}}{\sum \limits_{k=1}^{m} g_{i,k}} \Bigg) \Bigg] where `b` is the base logarithm. Parameters ---------- base : numeric, default 2 The base of the logarithm. Returns ------- JOINENT : numeric 0 < JOINENT <= 2 log_b(m) ; JOINENT approaches 0 when the landscape consists of a single patch, and approaches its maximum value when the classes are maximally disaggregated (i.e., every cell is a patch of a different class) and interspersed (i.e., equal proportions of all pairwise adjacencies). """ if len(self.classes) < 2: warnings.warn( "Entropy-based metrics can only be computed in landscapes with more " "than two classes of patches. Returning nan", RuntimeWarning, ) return np.nan # this would be the "adjacency vector" adjacencies = self.compute_total_adjacency_df().values.flatten() return compute_entropy(adjacencies, base=base)
[docs] def conditional_entropy(self, base=2): r""" Measure of spatial complexity of the landscape. Reflects only the spatial intricacy of the landscape pattern. It is computed at the landscape level as in: .. math:: CONDENT = - \sum \limits_{i=1}^{m} \sum \limits_{k=1}^{m} \Bigg[ P_i \frac{g_{i,k}}{\sum \limits_{k=1}^{m} g_{i,k}} \Bigg] \Bigg[ log_b \Bigg( \frac{g_{i,k}}{\sum \limits_{k=1}^{m} g_{i,k}} \Bigg) \Bigg] where `b` is the base logarithm. Parameters ---------- base : numeric, default 2 The base of the logarithm. Returns ------- CONDENT : numeric 0 <= CONDENT <= log_b(m) """ return self.joint_entropy(base=base) - self.entropy(base=base)
[docs] def mutual_information(self, base=2): """ Measure of aggregation. Reflects the difference between diversity of categories and diversity of adjacencies, and thus helps distinguishing landscape patterns with the same overall complexity. It is computed at the landscape level as in: .. math:: MUTINF = ENT - CONDENT Parameters ---------- base : numeric, default 2 The base of the logarithm. Returns ------- MUTINF : numeric 0 <= MUTINF <= log_b(m) """ return self.entropy(base=base) - self.conditional_entropy(base=base)
[docs] def relative_mutual_information(self): """ Measure of aggregation. Provides a standardized measure of mutual information that adjusts for the number of classes. It is computed at the landscape level as in: .. math:: RELMUTINF = MUTINF / ENT Returns ------- RELMUTINF : numeric 0 <= RELMUTINF <= 1 """ # The result of this metric should be the same regardless of the base, as long # as the base is the same for the calls of both mutual information and entropy, # so we add an inner variable here to ensure that _base = 2 return self.mutual_information(base=_base) / self.entropy(base=_base)
[docs] def contagion(self, percent=True): r""" Measure of aggregation. Measures the probability that two adjacent cells belong to the same class. It is computed at the landscape level as in: .. math:: CONTAG = 1 + \frac{ \sum \limits_{i=1}^{m} \sum \limits_{k=1}^{m} \Bigg[ P_i \frac{g_{i,k}}{\sum \limits_{k=1}^{m} g_{i,k}} \Bigg] \Bigg[ ln \Bigg( P_i \frac{g_{i,k}}{\sum \limits_{k=1}^{m} g_{i,k}} \Bigg) \Bigg]}{2 ln(m)} Parameters ---------- percent : bool, default True Whether the index should be expressed as proportion or converted to percentage. Returns ------- CONTAG : numeric 0 < CONTAG <= 100 (or 1 if `percent` is False) ; CONTAG approaches 0 when the classes are maximally disaggregated (i.e., every cell is a patch of a different class) and interspersed (i.e., equal proportions of all pairwise adjacencies), and approaches its maximum when the landscape consists of a single patch. """ contag = 1 - self.joint_entropy(base=np.e) / (2 * np.log(len(self.classes))) if percent: contag *= 100 return contag
########################################################################### # compute metrics data frames
[docs] def compute_patch_metrics_df(self, metrics=None, metrics_kws=None): """ Compute patch-level metrics. Parameters ---------- metrics : list-like, optional A list-like of strings with the names of the metrics that should be computed. If `None`, all the implemented patch-level metrics will be computed. metrics_kws : dict, default None Dictionary mapping the keyword arguments (values) that should be passed to each metric method (key), e.g., to compute `area` in meters instead of hectares, metric_kws should map the string 'area' (method name) to {'hectares': False}. If `None`, each metric will be computed according to FRAGSTATS defaults. Returns ------- df : pandas.DataFrame Dataframe with the values computed for each patch (index) and metric (columns). """ if metrics is None: metrics = Landscape.PATCH_METRICS if metrics_kws is None: metrics_kws = {} metrics_dfs = [self._patch_class_ser] for metric in metrics: if metric in metrics_kws: metric_kws = metrics_kws[metric] else: metric_kws = {} try: metric_val = getattr(self, metric)(**metric_kws) except AttributeError as getattr_e: raise ValueError( "{metric} is not among {Landscape.PATCH_METRICS}" ) from getattr_e except TypeError as metric_args_e: raise ValueError( "{metric} cannot be computed at the patch level".format( metric=metric ) ) from metric_args_e try: metrics_dfs.append(metric_val.drop("class_val", axis=1)) except AttributeError as drop_e: raise ValueError( "{metric} cannot be computed at the patch level".format( metric=metric ) ) from drop_e df = pd.concat(metrics_dfs, axis=1) # [['class_val'] + patch_metrics] df.index.name = "patch_id" return df
[docs] def compute_class_metrics_df(self, metrics=None, classes=None, metrics_kws=None): """ Compute class-level metrics. Parameters ---------- metrics : list-like, optional A list-like of strings with the names of the metrics that should be computed. If `None`, all the implemented class-level metrics will be computed. classes : list-like, optional A list-like of ints or strings with the class values that should be considered in the context of this analysis case. metrics_kws : dict, optional Dictionary mapping the keyword arguments (values) that should be passed to each metric method (key), e.g., to exclude the boundary from the computation of `total_edge`, metric_kws should map the string 'total_edge' (method name) to {'count_boundary': False}. If `None`, each metric will be computed according to FRAGSTATS defaults. Returns ------- df : pandas.DataFrame Dataframe with the values computed for each class (index) and metric (columns). """ if metrics is None: metrics = Landscape.CLASS_METRICS else: # here and only here we need to check manually that none of the # provided metrics is a patch-level metric. Why? because the # methods to compute patch-level metrics and class-level metrics # have the same signature, so calling them would not raise any # `TypeError` - instead, since the methods to compute patch-level # metrics return series/data frames instead of scalar values, we # would obtain a malformed dataframe. for metric in metrics: if metric in Landscape.PATCH_METRICS: raise ValueError( "{metric} cannot be computed at the class level".format( metric=metric ) ) if classes is None: classes = self.classes if metrics_kws is None: metrics_kws = {} try: metrics_sers = [] for metric in metrics: if metric in metrics_kws: metric_kws = metrics_kws[metric] else: metric_kws = {} metrics_sers.append( pd.Series( { class_val: getattr(self, metric)( class_val=class_val, **metric_kws ) for class_val in classes }, name=metric, ) ) except AttributeError as getattr_e: raise ValueError( "{metric} is not among {metrics}".format( metric=metric, metrics=Landscape.CLASS_METRICS ) ) from getattr_e except TypeError as metric_args_e: raise ValueError( "{metric} cannot be computed at the class level".format(metric=metric) ) from metric_args_e df = pd.concat(metrics_sers, axis=1) df.index.name = "class_val" return df
[docs] def compute_landscape_metrics_df(self, metrics=None, metrics_kws=None): """ Compute landscape-level metrics. Parameters ---------- metrics : list-like, optional A list-like of strings with the names of the metrics that should be computed. If `None`, all the implemented landscape-level metrics will be computed. metrics_kws : dict, optional Dictionary mapping the keyword arguments (values) that should be passed to each metric method (key), e.g., to exclude the boundary from the computation of `total_edge`, metric_kws should map the string 'total_edge' (method name) to {'count_boundary': False}. If `None`, each metric will be computed according to FRAGSTATS defaults. Returns ------- df : pandas.DataFrame Dataframe with the values computed at the landscape level (one row only) for each metric (columns). """ if metrics is None: metrics = Landscape.LANDSCAPE_METRICS if metrics_kws is None: metrics_kws = {} try: metrics_dict = {} for metric in metrics: if metric in metrics_kws: metric_kws = metrics_kws[metric] else: metric_kws = {} metrics_dict[metric] = getattr(self, metric)(**metric_kws) except AttributeError: raise ValueError( "{metric} is not among {metrics}".format( metric=metric, metrics=Landscape.LANDSCAPE_METRICS ) ) except TypeError: raise ValueError( "{metric} cannot be computed at the landscape level".format( metric=metric ) ) return pd.DataFrame(metrics_dict, index=[0])
[docs] def plot_landscape( self, cmap=None, ax=None, legend=False, figsize=None, legend_kws=None, **show_kws, ): """ Plot the landscape with a categorical legend. Uses `rasterio.plot.show`. Parameters ---------- cmap : str or `~matplotlib.colors.Colormap`, optional A Colormap instance. ax : axis object, optional Plot in given axis; if `None` creates a new figure. legend : bool, optional If `True`, display the legend. figsize : tuple of two numeric types, optional Size of the figure to create. Ignored if axis `ax` is provided. legend_kws : optional Keyword arguments to be passed to `matplotlib.axes.Axes.legend`. **show_kws : optional Keyword arguments to be passed to `rasterio.plot.show`. Returns ------- ax : matplotlib.axes.Axes Returns the `Axes` object with the plot drawn onto it. """ if cmap is None: cmap = plt.rcParams["image.cmap"] if isinstance(cmap, str): cmap = plt.get_cmap(cmap) if ax is None: fig, ax = plt.subplots(figsize=figsize) ax.set_aspect("equal") ax = plot.show( np.where( self.landscape_arr != self.nodata, self.landscape_arr, self.nodata, ), ax=ax, transform=self.transform, cmap=cmap, **show_kws, ) if legend: im = ax.get_images()[0] # get the colors of the values, according to the # colormap used by imshow colors = [im.cmap(im.norm(class_val)) for class_val in self.classes] # create a patch (proxy artist) for every color patches = [ mpatches.Patch(color=colors[i], label=f"{class_val}") for i, class_val in enumerate(self.classes) ] # put those patched as legend-handles into the legend if legend_kws is None: legend_kws = {} ax.legend(handles=patches, **legend_kws) return ax